
www.manaraa.com

Annals of Operations Research 131, 45–77, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

On a Local-Search Heuristic for a Class of Tracking
Error Minimization Problems in Portfolio Management

ULRICH DERIGS ∗ and NILS-H. NICKEL {derigs, nickel}@winfors.uni-koeln.de
Seminar for Information Systems and Operations Research (WINFORS), University of Cologne,
D-50969 Cologne, Germany

Abstract. In this paper we describe a 2-phase simulated annealing heuristic approach for a special class of
portfolio management problems: the problem of optimizing a stock fund with respect to tracking error and
transaction costs over time subject to a set of complex constraints with a linear factor return model “feeding”
the objective function with data. Our results on managing two real-world funds of a major German capital
investment company have shown that this meta-heuristic provides proposals for the fund manager which
are feasible with respect to the investment guidelines and excellent in quality in acceptable time. Thus the
approach is ideally suited to be used routinely and interactively within a decision support system to assist
the fund manager in his complex task of portfolio control and optimization.
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1. Introduction

In portfolio optimization a portfolio manager is faced with the problem to select from
a usually very large set of assets offered in the market (stocks, bonds, options, etc.) a
subset of assets for investment following a specific objective with respect to (future) per-
formance and risk while respecting certain constraints from the budget and from legal
regulations as well as internal guidelines. Once a portfolio is generated it has to be con-
trolled and re-optimized over time due to the dynamic of asset markets and here another
aspect, the minimization or limitation of transaction cost becomes critical. Managing a
portfolio can be guided by two strategies: In “active” management we assume that mar-
kets are not fully efficient and offering potentials such that a performance exceeding that
of standard indices can be achieved by using specific knowledge, i.e. extensive financial
analysis and the fund managers experience. On the other hand we have the hypothesis
that financial markets are efficient and that return and risk are fully reflected in the actual
asset price which leads to the concept of “passive” management and the development of
so-called index-tracking models, where portfolio management tries to imitate or copy
some benchmark-portfolio, as for instance a market index (DAX, EUROSTOXX, etc.).

Considering the wide range of assets, the heterogeneous group of investors with
(individual) different objectives, and the set of investment regulations or guidelines,
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portfolio management is obviously a non-trivial and non-routine task. In order to re-
duce complexity and to systematize the problem solution, a multi-stage portfolio man-
agement process has been proposed in the literature (see Lederman and Klein (1994),
for instance) and for supporting this process a bundle of different models and methods
has been developed and there exist several classes of software systems which are used in
practice. For market analysis highly sophisticated econometric models have been devel-
oped and there exist several services which support fund management with up-to-date
data on assets. The problem of asset selection is the core of portfolio theory, and the
famous model of Markowitz (1952) gives a formal theoretical solution. For controlling
investment guidelines knowledge-based software systems have been developed which
check portfolios with respect to the set of constraints and indicate violations. Yet, all
these models and support systems leave the (human) portfolio manager with the prob-
lem to restructure the portfolio appropriately, i.e. the fund manager has no support in
identifying promising transactions which will result in a feasible and profitable portfolio
encountering the portfolio’s objectives as well as the aspect of minimizing transaction
costs. It is this portfolio manager’s daily decision problem which has motivated our re-
search and which is the goal of our approach developed for portfolio (re-)optimization.

Portfolio Optimization is a classical research problem in Operations Research. Re-
search started with the mean–variance portfolio selection model by Markowitz (1952)
which from a mathematical programming point of view is a quadratic optimization prob-
lem with linear constraints. This basic model has several limitations which prohibit its
use in practice and in the sequel several extensions and modifications have been de-
veloped which address complex constraints, transacting costs or represent alternative
management objectives. Besides the problem of representing uncertainty appropriately
which is inherent in all investment models all these developments share another obstacle:
The more these models are representing relevant practical issues the more they become
computationally infeasible. Bienstock (1996) has shown that the classical quadratic op-
timization problem becomes NP-hard already if adding a single cardinality constraint.
Thus, due to the computational complexity of portfolio models the solver has to resume
to heuristic, i.e. non-exact methods.

Consequently, in recent years several authors have developed and studied approx-
imative methods especially meta-heuristics in this problem area: Beasley, Meade, and
Chang (1999) propose a genetic algorithm for solving a tracking error model with a
special constraint for limiting the shares of individual assets. Chang et al. (2000) have
analyzed various meta-heuristics for cardinality constrained portfolio optimization prob-
lems. Crama and Schyns (1999) have proposed a simulated annealing heuristic for gen-
erating mean-variance efficient portfolios subject to a set of complex constraints. In all
these approaches a specific problem type is discussed, i.e. the basic model is extended
by a specific aspect like for instance the introduction of a cardinality constraint to limit
the complexity of the portfolio with respect to the number of assets, the introduction of
transaction cost or the definition of another objective like tracking-error and the use of
a specific return model. Yet, to our knowledge our work is the first which explicitly fo-
cusses on models representing concrete portfolio re-optimization problems occurring in
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a capital investment firm concerning the objective function as well as investment guide-
lines.

Our work is motivated by several projects which we have conducted with major
German capital investment firms. Not only there is no generally accepted or generally
applied model in practice, the models which have been developed in different companies
and which are appropriate for the different classes of funds differ significantly with re-
spect to structure, i.e. objective function and constraints such that we cannot expect one
algorithm to be suitable for all problems. In Derigs and Nickel (2002) we have devel-
oped a concept for a model-based decision support system generator (DSS-generator) for
portfolio optimization which is open to be flexibly customized for specific problem in-
stances. The core of the generator is a rule-base for managing the investment guidelines
and a (set of) local-search heuristic(s). For representing the diverse classes of guide-
lines arising in practical problems we have developed and implemented the structural
concept of so-called bundle constraints. To be able to treat all kind of constraints and to
allow a fast evaluation of moves local search has to be based on a rather simple class of
moves. Also, it is essential to define a proper problem-specific classification and proce-
dural handling of constraints, i.e to decide which constraints are relaxed and penalized
in the objective, etc.

In this paper we focus on a special class of portfolio optimization problems: the
problem of optimizing a stock fund with respect to tracking error and transaction costs
over time subject to a set of complex constraints, including a cardinality constraint and
static as well as dynamic bundle constraints, with a linear factor return model “feeding”
the objective function with data. With this specification the underlying model differs
significantly from the models which have been treated in the OR-literature so far: the
guidelines extend the list of constraints studied in Chang et al. (2000) and Crama and
Schyns (1999) and the tracking measure is significantly different from the one given by
Beasley. Moreover we even link the return model to the selection model and thus to
the solution procedure. Altogether the complexity of our model as well as its practical
relevance goes beyond the models that have been treated in literature.

We describe a 2-phase Simulated Annealing approach and we report extensive nu-
merical experience on two real-world cases. The local search is based on the so-called
class of basic moves where the shares of just two assets are adjusted. In the 2-phase
heuristic the first phase is to generate a feasible portfolio and the second phase is to find
a near-optimal portfolio, and for the two phases we apply a different classification and
handling of constraints as well as different objective functions. The guiding strategy of
the second phase is to choose two assets at random and then to determine the optimal
step size for the associated basic move. Yet, controlled by some parameter, this steepest
descent choice is replaced by the non-improving move in the opposite direction. We cus-
tomize this general approach to the special problem-class in the following aspects: For
the objective function, i.e. the tracking error function and the transaction cost function
we develop update formulas to allow an efficient evaluation of the basic moves. Also we
use the structure of the return model to deduce formulas for the optimal step-size of a
basic move.
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We show that with this specialization the 2-phase method is adequate and effective
to handle the problems from two case studies. Due to several specialities of the applica-
tion as for instance the influence of the specific return model on the selection model, the
approach is not immediately transferable to the models which have been discussed by
other authors. Yet, we think that the fundamental strategy of the 2-phase approach should
be applicable to other problem classes too, if the heuristic is adequately customized.

The paper is organized as follows: In section 2 we introduce the mathematical
model of the problem and in section 3 we specify the heuristic approach which we have
developed to solve this model. We have developed and applied this approach in a project
to managing two stock funds. Results for these real-world portfolio management prob-
lems are presented in section 4.

2. An index tracking model for passive portfolio management

Within passive portfolio management the fund manager wants to select a portfolio, the
performance of which is “as close as possible” to a specific benchmark portfolio because
the benchmark portfolio itself is violating a set of legal or contractual constraints, perma-
nently or momentarily, and thus is infeasible. In such a situation certain shares have to
be replaced by substitutes which have similar performance profile and thus, quite natu-
rally, there arises an optimization problem to approximate the benchmark by a so-called
tracking portfolio.

A common concept to measure the quality of the approximation is by criteria based
on the difference between the (expected) return of the benchmark and the (expected) re-
turn of the tracking portfolio. Here the so-called tracking error (TE), quantifies the
quality of the approximation by a function of the difference between the return of the
benchmark and that of the tracking portfolio, and the tracking error problem is to mini-
mize this measure (see Rudd (1980), for example). Note, that in the literature there exist
alternate index tracking models that combine a tracking error measure with an excess
return approach, for example (cf. Beasley, Meade, and Chang (1999)).

In this section we introduce the basic concept of index tracking, we formulate the
specific quantitative model and we introduce extensions which are necessary for model
implementation in real world scenarios. Finally we shortly describe a specific return
model which was given in our application study. Under a conceptual viewpoint, the
return model is outside the decision model and only feeding the optimization model with
data, yet its specific structure determines the instantiation of the objective function of the
optimization model and, in our application, it has been motivating the development of
our specific heuristic search procedure. Note that several other return models have been
assumed in literature, cf. for instance Beasley, Meade, and Chang (1999), which lead
to different selection models and these differences with respect to the return model are
one obstacle for transferring different methods between these approaches and allowing
a comparison on problems given in literature.
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The basic model. For representing the problem and stating the model we use the fol-
lowing notation:
N : the number of available assets (i.e. the size of the investment universe),
Si(t): the price of asset i at time t (i = 1, . . . , N),
yi ∈ Z: pieces of asset i in a portfolio (i = 1, . . . , N),
SP (t) := ∑N

i=1 yiSi(t): the net asset value (NAV) of a portfolio at time t ,
xi := yiSi(t)/SP (t): the share of asset i in a portfolio (i = 1, . . . , N),
ri : the return of asset i (i = 1, . . . , N),
rx : the return of a portfolio.
Usually no short sales of assets are allowed and a budget constraint is given. Thus the
set X of all potential portfolios represented by shares can be written as

X =
{

x = (x1, . . . , xN)

∣∣∣ N∑
i=1

xi = 1, xi � 0, i = 1, . . . , N

}
. (1)

Since the future price Si(T ) of an asset i at time T is usually unknown at present time
t , the return ri as well as the return rx is also an unknown quantity at time t < T .
This uncertainty is generally modeled by assuming that ri is a random variable and
the estimation of the probability distribution of ri is based on so-called return-models.
The selection of an appropriate return model is a non-trivial problem and is outside the
selection model.

Given the investment universe {1, . . . , N} of N assets let without loss of generality
the first NB assets of the investment universe be the assets contained in the benchmark.
Then let x = (x1, . . . , xN) represent the tracking portfolio and

x(B) =
(
x

(B)

1 , . . . , x
(B)
NB

, x
(B)

NB+1, . . . , x
(B)
N︸ ︷︷ ︸

=0

)
(2)

represent the benchmark portfolio. The shares x
(B)
NB+1, . . . , x

(B)
N are set to zero because

the corresponding assets are not contained in the benchmark. Now, let rx and rB be the
(random) returns of x and x(B), respectively, then the tracking error variance (TEV), is
defined as the variance of the difference rx − rB , i.e. TEV(x) := Var(rx − rB) and we
obtain the following optimization problem:

min
{
TEV(x) | x ∈ X

}
. (3)

This formulation corresponds to the principle of passive fund management. In passive
fund management the investor is only exposed to market risk in contrast to active man-
agement where he faces individual company risk, too. It is important that also a poor
performance of the benchmark is imitated. For example, for an investor who manages
his portfolio by a mixed strategy, i.e. integrates active with passive management, it is es-
sential that the passive fund copies the benchmark as precise as possible, since a hedging
strategy of the market risk would fail, if the fund manager would try to outperform the
benchmark return.
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Yet, this basic tracking error model has several limitations which are crucial with
respect to practical implementation: The model does not incorporate constraints which
exclude portfolios from the set X due to investment guidelines, and it does not incorpo-
rate transaction costs into the decision. Modifications of the basic model which address
these extensions lead to mathematical programs which are computationally intractable
(cf. Bienstock (1996)). In the following we briefly attend to these important issues and
we specify our return model.

Constraints. Portfolio selection has to obey investment guidelines as for instance the
German law on investment trust companies KAGG (cf. BAKred (1998)). Thus the set X

of all potential portfolios stated in the model above has to be restricted to a subset of so-
called feasible portfolios. From an algorithmic point of view the source of the constraints
is irrelevant and only the structure is relevant. The most simple and basic constraints are
the so-called floor/ceiling constraints for each individual asset (Li � xi � Ui). In order
to restrict the shares of a certain group B of assets, as for instance the shares for industrial
sectors, a (static) bundle constraint can be imposed (LB �

∑
i∈B xi � UB). To reduce

the complexity of portfolio control and also to control transaction costs, the number
of assets in the portfolio is often restricted by a cardinality constraint (NL � |{i ∈
{1, . . . , N} | xi �= 0}| � NU ). Yet, there are more complex constraints, as for instance
the following rule of the KAGG which requires that “the share of the set of those assets
with an individual share of at least 5% should not exceed 40%” (

∑
i:xi�0.05 xi � 0.4).

Note, that this rule of the KAGG can be formulated as a (dynamic) bundle constraint
with B := {i = 1, . . . , N | xi � sB}, sB := 0.05, LB := 0, UB := 0.4. It is dynamic
because the selection of the bundle condition can change if the composition of x varies.
For a thorough discussion of common types of constraints see Chang et al. (2000) and
Crama and Schyns (1999).

Transaction costs. Re-optimizing a portfolio successively over time may result in buy-
and sell transactions the costs of which exceed the (expected) gain in performance, i.e.
reduce additional return. Consider for simplicity that a constant transaction cost factor
cvar applies for each amount of ordered assets. Then the total transaction costs to turn
over from portfolio x̄ to x is Ctac = cvar · TO(x̄, x) with the turnover volume

TO(x̄, x) :=
N∑

i=1

|xi − x̄i | (4)

and the net return of a portfolio respecting the transaction costs is reduced by an amount
which is proportional to the turnover volume. For the straightforward modeling ap-
proach to reduce the return by transaction costs the tracking error variance objective is
not suitable, since, assuming a constant transaction cost factor, transaction costs have no
influence on this measure.

Another standard approach which we follow here is to treat transaction costs as
a second objective function (cf. Adcock and Meade (1994)) and to consider portfolios
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which are efficient with respect to TEV(x) and TO(x̄, x). Such portfolios can be con-
structed by solving the following parametric optimization problem

min
{
(1 − λ) · TEV(x) + λ · cTO · TO(x̄, x) | x ∈ X

}
(5)

varying the weighting parameter λ ∈ [0, 1[. Here cTO > 0 is a fixed scalar to balance the
magnitude of the two objective functions.

Factor return model. A common approach is to model returns with a multi-factor
model (see Sharpe (1970)). Here it is assumed that the returns of assets are dependent
on the return of several macro-economical factors which are identified by principal com-
ponent analysis for example. Applying such a model we assume that the return ri of an
asset i (i = 1, . . . , N) is (linearly) dependent on the return Rg of K macro-economical
factors or indices (g = 1, . . . , K), i.e.

ri = αi +
K∑

g=1

βigRg + εi (6)

with:
ri : return of asset i (i = 1, . . . , N),
Rg: return of factor g (g = 1, . . . , K),
αi : asset-specific component of ri (independent of factors),
βig: sensitivity of ri to the return of factor g (factor loading),
εi: random perturbation variable.
For given factors the returns Rg are modeled as random variables with expected value
E(Rg) and variance Var(Rg) (g = 1, . . . , K) and the random perturbations are assumed
to be standard normally distributed and uncorrelated. Based on these assumptions we
obtain

Cov(ri, rj ) =
K∑

g=1

K∑
h=1

βigβjhCov(Rg, Rh) + Cov(εi, εj )︸ ︷︷ ︸
=0 if i �=j

, (7)

Var(ri) =
K∑

g=1

K∑
h=1

βigβihCov(Rg, Rh) + Var(εi). (8)

The return rx of a portfolio x = (x1, . . . , xN ) is linearly dependent on the K returns Rg

(g = 1, . . . , K), and we obtain

rx =
N∑

i=1

xi

(
αi +

K∑
g=1

βigRg + εi

)

=
N∑

i=1

xiαi︸ ︷︷ ︸
=:αx

+
K∑

g=1

(
N∑

i=1

xiβig

)
︸ ︷︷ ︸

=:βxg

Rg +
N∑

i=1

xiεi︸ ︷︷ ︸
=:εx

, (9)
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Var(rx) =
K∑

g=1

K∑
h=1

βxgβxhCov(Rg, Rh) +
N∑

i=1

x2
i Var(εi). (10)

Using the notation β := (βig)i=1,...,N;g=1,...,K and C := (Cov(Rg, Rh))g,h=1,...,K for the
matrices of factor loadings and covariances, respectively, the tracking error variance
TEV(x) is given by:

TEV(x) := Var(rx − rB)

= (
x − x(B)

)T
βCβT

(
x − x(B)

) +
N∑

i=1

(
xi − x

(B)
i

)2
Var(εi) (11)

and the objective function in (3) is a quadratic function.
Now we are able to formulate the generic class of tracking error minimization

problems TEP which we address in this paper:

min f (x) := (1 − λ) · TEV(x) + λ · cTO · TO(x̄, x) (12)

s.t. Li � xi � Ui (i = 1, . . . , N), (13)

NL �
∣∣{i ∈ {1, . . . , N} | xi �= 0}∣∣ � NU, (14)

LBs
�

∑
i∈Bs

xi � UBs
(for all static bundles Bs, s = 1, . . . , NS), (15)

∑
i:xi�sBd

xi � Ud (for all dynamic bundles Bd, d = 1, . . . , ND), (16)

x ∈ X. (17)

Several modifications of the classical (unconstrained) portfolio selection models which
address extensions such as (13)–(15) have been proposed in literature. Yet, these mathe-
matical programs become computational in-tractable soon. Bienstock (1996) has shown
that the classical quadratic optimization problem becomes NP-hard already if adding a
single cardinality constraint. Due to this computational complexity of our model TEP
we have to resume to heuristics, i.e. non-exact methods.

3. A local-search approach for TEP

As we have seen we can formalize the tracking error problem as a general mathematical
program

min
{
f (x) | x ∈ X, x fulfills constraints in C0

}
. (18)

Here the objective function is highly non-linear in general and the constraints may de-
fine a non-convex, possibly even discrete set of feasible solutions. For such problems
exact and analytical methods are infeasible and only heuristic methods are applicable.
In recent years the concept of meta-heuristics has been developed to cope with such
highly complex optimization problems. A meta-heuristic is an iterative master process
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that guides and modifies the operations of “subordinate heuristics” to efficiently produce
high-quality solutions (cf. Osman (1995)). Prominent examples for meta-heuristics are
Simulated Annealing (SA), Tabu Search (TS) etc. (cf. Aarts and Lenstra (1997)). For
the subordinate heuristic the concept of neighborhood search or local search is most
common.

In this section we describe a 2-phase SA-based heuristic for solving TEP. We will
first specify the overall design and then describe the implementation of the two phases
separately.

3.1. Design specification

For the computational efficiency of a specific local search implementation as well as for
its effectiveness and quality three issues are crucial: the handling of the constraints from
the underlying optimization model, the definition of a neighborhood structure allowing
an efficient evaluation of moves and the choice of the heuristic search strategy. We start
the description of our approach focusing on these issues.

Handling of constraints. When solving a (portfolio) optimization problem by local
search the set C0 of constraints is partitioned into three classes, i.e. C0 = C1 ∪ C2 ∪ C3

with the following property:

– The constraints in set C1 are controlled through a so-called constraint checker. The
constraint checker is basically a function Check(x, Ck) which expects as input a port-
folio x and returns the value TRUE if all constraints in Ck are fulfilled by x, and the
value FALSE otherwise.

– The constraints in C2 are relaxed, i.e. violations are evaluated and introduced as
penalty term into the objective function of the model leading to the modified ob-
jective function, the so-called evaluation function:

F(x) := f (x) + Penalty(x, C2). (19)

This penalty approach is a common trick in constrained optimization. Here the fulfill-
ment of the relaxed constraints has to be realized by the optimization process, i.e. due
to the relative high costs of infeasible solutions, the solution process should finally
converge to feasible solutions only.

• Finally, the constraints in C3 are controlled through the specific local search proce-
dure, i.e. only portfolios which are feasible with respect to C3 are generated during
the search.

Note, that when optimizing a specific portfolio, this partition has to be appropriately
specified and the necessary Check-functions and evaluation functions have to be acti-
vated. Note, that although a Check-function may be available which is able to control all
constraints in C0, as for instance a professional guideline management system, it may be
more efficient to work with non-empty sets C2 and C3. In our 2-phase approach we will
even change the partition in the course of the solution process.
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Neighborhood structure. A crucial choice within every local search approach is the
appropriate specification of a neighborhood structure. Here it is essential that there ex-
ists a fast algorithm to calculate the effect of a move from a solution x to a solution
x′ from the neighborhood N(x). See for instance the application of local search to the
quadratic assignment problem (cf. Burkard and Rendl (1984)). Due to the complexity of
the TEV-function (11) a straightforward evaluation of f (x′) and F(x′), respectively, is
computationally infeasible since it has a complexity of O(N2). Thus through the defin-
ition of an appropriate neighborhood topology the moves have to be restricted allowing
a more efficient update formula.

In our approach we restrict the neighborhood to those portfolios which differ in
the share of two assets only, i.e. we allow only move-operators x → x′ with x′ ∈ N(x)

which increment the share of asset i by δ and reduce the share of asset j by δ, i.e.

x′ = x + δ · eij = x + δ · (0, . . . , 0,+1, 0, . . . , 0,−1, 0, . . . , 0)T. (20)

Thus, such a basic move can be identified by the tripel (δ, i, j). Now, let D := βCβT

and Vk := Var(εk) for k = 1, . . . , N , then it can be shown that the objective values of a
neighbor x′ can be obtained from the objective values of x by the formulas

TEV(x′) = TEV(x + δeij ) = TEV(x) + UpdateTEV(δ), (21)

TO(x̄, x′) = TO(x̄, x + δeij ) = TO(x̄, x) + UpdateTO(δ) (22)

with

UpdateTEV(δ) = 2δ

N∑
k=1

(
xk − x

(B)
k

)
(Dki − Dkj) + δ2(Dii − 2Dij + Djj)

+ δ
(
2xi − 2x

(B)
i + δ

) · Vi − δ
(
2xj − 2x

(B)
j − δ

) · Vj , (23)

UpdateTO(δ) = |xi + δ − x̄i | − |xi − x̄i | + |xj − δ − x̄j | − |xj − x̄j |. (24)

Here, UpdateTEV is a quadratic function which is computable in order O(N). A simple
case differentiation gives:

UpdateTO(δ) =




−2(δ − δ1); δ < δ1,

0; δ1 � δ � δ2,

2(δ − δ2); δ2 < δ

(25)

with

δ1 :=




xj − x̄j ; xi � x̄i ∧ xj � x̄j ,

min{x̄i − xi, xj − x̄j }; (xi � x̄i ∧ xj > x̄j ) ∨ (xi > x̄i ∧ xj � x̄j ),

x̄i − xi; xi > x̄i ∧ xj > x̄j

(26)
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and

δ2 :=




x̄i − xi; xi � x̄i ∧ xj � x̄j ,

max{x̄i − xi, xj − x̄j }; (xi � x̄i ∧ xj > x̄j ) ∨ (xi > x̄i ∧ xj � x̄j ),

xj − x̄j ; xi > x̄i ∧ xj > x̄j .

(27)

Thus UpdateTO is a “funnel-shaped” function which can be computed in O(1) and the
update for the general objective function (12)

Update(δ) := (1 − λ) · UpdateTEV(δ) + λ · cTO · UpdateTO(δ) (28)

can be computed in linear time.

The meta-heuristic search strategy. For guiding the local search procedure we have
chosen the strategy of Simulated Annealing (SA). SA is a local search concept which
performs a stochastic neighborhood search of the solution space. The advantage of SA
over classical local search methods like the steepest descent method is its ability to avoid
getting trapped into bad local minima. The motivation for using SA here is its rather
simple implementation and the good experience with SA for solving other quadratic
optimization problems.

The underlying principle arises from an analogy with certain thermo-dynamical
processes, i.e. the cooling of melted solid (cf. Kirkpatrick, Gelatt, and Vecchi (1983))
and is rather simple: Starting from an initial solution x, another solution x′ ∈ N(x)

is selected randomly. If x′ improves the value of the objective function, i.e. F(x′) <

F(x), then x′ is accepted, i.e. x′ replaces x as the new current solution. Otherwise, x′
is accepted with a certain probability only. Then the next iteration is started from the
current solution x.

During the process the probability of accepting a non-improving solution decreases
with the magnitude of the deterioration � = f (x′) − f (x) and with the duration of the
process, i.e. the number of iterations which have been performed. The process of con-
trolling this probability is called the cooling schedule and is generally governed by the
Boltzmann-function p(T ,�) = exp(−�/T ), i.e. the neighbor x′ is accepted with prob-
ability p(T ,�). Here T is called the temperature which is a non-decreasing function in
the number of iterations. In the so-called geometric cooling schedule the temperature T

is kept constant during a fixed number L of consecutive selections/moves, a so-called
(cooling) stage of the process. After each stage the temperature T is multiplied by a
constant factor α ∈]0, 1[. In our tests we have implemented a geometric cooling sched-
ule with α = 0.95.

For the specification of the initial temperature we have implemented the following
data-dependent procedure (cf. Johnson et al. (1989)): During a first phase SA is run for
a pre-specified number L′ of iterations without rejecting any move and the average dete-
rioration � of the objective function over this first phase is calculated. We then calculate
the temperature T0 which would have given a pre-specified acceptance probability χ0 for
the moves taken during the first phase, i.e. T0 = −�/ln χ0. We have implemented this
first phase approach with L′ = 400 iterations (random moves) and χ0 = 0.8. Also, we
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have implemented the common criteria to stop the SA-procedure after a pre-specified
number of K stages.

Usually, SA is very sensitive to the choice of the starting solution. Therefore, in
our implementation, we allow to handle a population of (initial) portfolios and then we
perform the SA heuristic for each of these solutions independently (i.e. without any
interaction). After termination we keep the best solution of the entire set of solutions
which have been constructed during the search processes.

3.2. The 2-phase approach for solving TEP

Heuristic approaches for solving hard optimization problems usually consist of two
phases: in phase I (construction phase) a feasible solution is generated and this solution
is passed to the second phase to be used as initial solution and in phase II (improvement
phase) better solutions are generated while feasibility is maintained using some local
search strategy. The basic idea of our approach for solving TEP is to apply Simulated
Annealing in both phases. Yet, for solving the feasibility problem in phase I we use a
different objective function and neighborhood definition as for the optimization problem
in phase II. In the following we describe the specification of both phases, i.e. the parti-
tioning of C0 and the specification of the basic moves, as well as the modified objective
function for phase I.

3.2.1. Description of phase I
Partitioning of constraints and definition of penalty function. For phase I we partition
the set C0 as follows: C1 consists of the floor/ceiling constraints and C3 contains the
cardinality constraint and the budget constraint. C2 consists of all other (dynamic and
static) bundle constraints. In order to guide the heuristic search procedure to construct
solutions fulfilling the bundle constraints in C2 we penalize all violations and obtain the
following evaluation function

F(x) := f (x) +
∑
c∈C2

λc · max

{
0,

∑
i∈Bc

xi − UBc
, LBc

−
∑
i∈Bc

xi

}
(29)

with Bc the set of assets defining the bundle of constraints c ∈ C2. In the computational
results reported in this paper we have penalized all violations of guidelines c ∈ C2 with
the same scalar λc := 40.

A necessary and first step in most local search applications is the generation of
a feasible start solution. Thus, for applying SA in the construction phase we have to
generate an initial portfolio which fulfills all the constraints in C1 ∪C3. For that purpose
we have implemented the following procedure.

Construction of a start solution for phase I. First we determine the set IR :=
{1, . . . , N | Li > 0} of required assets. If

∑
i∈I Li > 1 or |IR| > NU then the problem

is infeasible. Otherwise we determine a set K ⊂ {1, . . . , N} \ IR of minimal cardinality
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such that
∑

i∈IR∪K Ui � 1 by successively selecting those indices i from {1, . . . , N} \ IR

with the largest Ui . If |IR| + |K| > NU then the problem is infeasible.
Otherwise we set Nmin := max{|IR| + |K|, NL}, select randomly a number j ∈

{Nmin, . . . , NU } and extend the set IR by a set J of j − |IR| different assets chosen from
the set {1, . . . , N} \ IR. Let I := IR ∪ J . If∑

i∈I

Ui � 1 (30)

then the procedure terminates successfully, otherwise we modify I replacing assets from
the set J \ K by assets from the set K \ J until this condition (30) is fulfilled.

If
∑

i∈I Li = ∑
i∈I Ui we set xi = Li for all i ∈ I . Note that for this case we have∑

i∈I Li = 1 = ∑
i∈I Ui and thus we have no optimization problem at all.

Otherwise all assets i ∈ I are set to their lower bound Li and we set Lsel :=∑
i∈I Li and the “slack” Ssel := ∑

i∈I (Ui − Li). Now, in order to fulfill the budget
constraint the remaining share 1 − Lsel is allocated to the assets i ∈ I by the following
formula:

xi = Li + (Ui − Li) · 1 − Lsel

Ssel
. (31)

This simple construction procedure guarantees the fulfillment of the floor/ceiling con-
straints in C1 and the cardinality constraint and budget constraint in C3.

Specification of the basic move. In a first step two different assets i, j are selected
randomly. If both assets are not contained in the current portfolio, i.e. xi = 0 and
xj = 0, then we decide not to perform a basic move (20) and we have to try another pair
of assets. Otherwise we have to distinguish between three cases. In the case that both
assets are contained in the current portfolio (stated as Case 1), we select at random a
new feasible share for asset i and modify the share of asset j to compensate this change.
For each of the possibilities that exactly one asset, i or j , has a share greater than zero
(stated as Case 2 and Case 3, respectively), two sub-cases have to be distinguished. If the
current portfolio has a cardinality less than the upper bound NU , we apply the procedure
of Case 1. Otherwise we simply exchange the shares of the two assets. Finally, the
potential move is checked with respect to the constraints in C1. In table 1 a pseudo-code
for this move-operator is given.

3.2.2. Description of phase II
Partitioning of constraints. Now, for the optimization in phase II the set C0 is parti-
tioned such that C2 is empty, C1 contains the cardinality constraint and C3 consists of
all other constraints, i.e. the budget constraint, the floor/ceiling constraints and the (dy-
namic and static) bundle constraints. Thus the move-operator of phase II has to maintain
feasibility with respect to all these constraints and the evaluation function is the actual
objective function, i.e. F(x) = f (x).
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Table 1
Procedure for the Phase1-Move.

Phase1_Move(x, x′):
(1) repeat
(2) x′ := x

(3) select i, j ∈ {1, . . . , N} randomly with i �= j

(4) if (xi > 0 or xj > 0) then
(5) if (xi > 0 and xj > 0) then (Case 1)
(6) select x′

i
∈ [Li,Ui ] randomly

(7) x′
j := xj + (xi − x′

i )

(8) if (xi = 0 and xj > 0) then (Case 2)
(9) Swap(i, j )
(10) if (xi > 0 and xj = 0) then (Case 3)
(11) if |{xk �= 0 | k = 1, . . . , N}| < NU then (Sub-case 1)
(12) select x′

i
∈ [Li, Ui ] randomly

(13) x′
j := xj + (xi − x′

i )

else (Sub-case 2)
(14) x′

i
:= 0

(15) x′
j := xi

(16) until (Check(x′, C1) = TRUE and x′ �= x)

Specification of the basic move. The general strategy in phase II is to choose the assets
for a basic move at random and then to determine the “optimal” step size δ, i.e. to
minimize the corresponding Update-function with respect to the constraints. Yet, this
“greedy” principle is combined with some random argument allowing non-improving
moves. For that purpose we introduce a control parameter p ∈ [0, 1]. A pseudo-code
description of the move-operator is given in table 2.

In a first step a pair of different assets i, j with at least one already contained in the
current portfolio, i.e. with xi > 0 or xj > 0, is selected randomly. Then procedure “Cal-
culate_Max_Delta” determines values δ− and δ+ for the maximal possible decrease and
increase of the current share xi such that feasibility with respect to the constraints in C3

is maintained by the basic move and procedure “Calculate_Opt_Delta(δ∗ )” determines
the step size δ∗ giving the minimum of Update(δ), i.e. the “optimal” step size.

In the case that δ∗ is in [−δ−, δ+] with δ∗ �= 0 this “most improving” step size is
applied. If δ∗ � δ+ and δ+ = 0 then we set δ∗ := −δ−, analogously, if δ∗ � −δ− and
δ− = 0 then we set δ∗ := δ+. Thus, in these cases where we are not allowed to move
into the favorable direction we force to take a “large” step in the opposite direction to
escape from this “deadlock” situation and we generate a neighboring solution for the
SA-metaheuristic selection. Otherwise, if δ∗ exceeds δ+ and δ+ > 0, we set δ∗ := δ+
with probability p and set δ∗ to the opposite extremal value −δ− with probability (1−p).
Analogously, if δ∗ < −δ− and δ− > 0 then we set δ∗ := −δ− with probability p and
set δ∗ to the opposite extremal value δ+ with probability (1 − p). With this strategy
not always to perform the largest feasible improving step we allow to generate non-
improving moves for the SA-heuristic.
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Table 2
Procedure for the Phase2-Move.

Phase2_Move(x, x′, p):
(1) x′ := x

(2) repeat
(3) δ∗ := 0
(4) select i, j ∈ {1, . . . , N} randomly with i �= j

(5) if (xi > 0 or xj > 0) then
(6) Calculate_Max_Delta(δ−, δ+)
(7) Calculate_Opt_Delta(δ∗)
(8) if (δ∗ = 0) then
(9) if (δ+ = 0) then δ∗ := −δ− else δ∗ := δ+
(10) if not (δ∗ ∈ [−δ−, δ+]) then
(11) draw a uniform distributed random number u from [0, 1[
(12) if (δ∗ > δ+) then
(13) if (u > p or δ+ = 0) then δ∗ := −δ− else δ∗ := δ+

else
(14) if (u > p or δ− = 0) then δ∗ := δ+ else δ∗ := −δ−
(15) until δ∗ �= 0
(16) x′

i := xi + δ∗
(17) x′

j
:= xj − δ∗

Now we describe the implementation of the two procedures “Calculate_Max_Delta” and
“Calculate_Opt_Delta” successively in this order.

Given a pair of assets i, j the determination of δ− and δ+ is performed in two
steps. First, for all NS static bundle constraints we define indicator variables hl,b with
hl,b = 1 if asset l is contained in bundle constraint b, otherwise hl,b = 0 (l = 1, . . . , N ;
b = 1, . . . , NS). Note that for the case that both of the assets i, j of a basic move are in
a bundle the fulfillment of the bundle condition need not be checked since the increase
of the bundle weight by the increase of one asset is compensated by the corresponding
decrease of the other asset et vice versa. Now we determine:

δ−
i := min

{
(xi − Li), min

{
N∑

l=1

hl,bxl − Lb

∣∣∣hi,b = 1 ∧ hj,b = 0, b = 1, . . . , NS

}}
,

δ+
i := min

{
(Ui − xi), min

{
Ub −

N∑
l=1

hl,bxl

∣∣∣hi,b = 1 ∧ hj,b = 0, b = 1, . . . , NS

}}
,

δ−
j := min

{
(xj − Lj), min

{
N∑

l=1

hl,bxl − Lb

∣∣∣hi,b = 0 ∧ hj,b = 1, b = 1, . . . , NS

}}
,

δ+
j := min

{
(Uj − xj ), min

{
Ub −

N∑
l=1

hl,bxl

∣∣∣ hi,b = 0 ∧ hj,b = 1, b = 1, . . . , NS

}}

(32)

and we define δ− := min{δ+
j , δ−

i } and δ+ := min{δ+
i , δ−

j }.
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In a second step, these two values may have to be reduced to prevent violations of
the ND dynamic bundle constraints.

For this purpose we analyze the ND dynamic bundle constraints one after the other
and update (more precisely: reduce) δ− and δ+ if necessary. Let b ∈ {Bd | d =
1, . . . , ND} a dynamic bundle with Ab := ∑

k:xk�sb
xk its current weight and Ab(δ) its

weight after performing a basic move with step size δ, also let ε > 0 a small number.
Note that in a formal analysis we have to discuss changes of δ > 0 only, i.e. we may
assume that xi is increased and xj is decreased by δ, since for the other case we may
swap the index.

Thus we have to distinguish four (basic) cases which lead to several sub-cases
for which a different update-formula occurs. The graphs of Ab(δ) for these cases are
displayed in figure 1 and the associated update formulas for δ+ are given. In our imple-
mentation we have set ε := 10−7.

The procedure “Calculate_Opt_Delta” determines δ∗ for which Update(δ) attains
its minimum. Since UpdateTO is not differentiable at δ1 and at δ2 also Update is not
differentiable there. Yet, UpdateTO is linear over each of the three intervals defined by
δ1 and δ2 and thus we can determine the minima of Update on each of the three intervals
by applying simple calculus and then identify δ∗. It can be shown that

δ∗ = −(1 − λ) · [∑N
k=1(xk − x

(B)
k )(Dki − Dkj ) + (xi − x

(B)
i )Vi − (xj − x

(B)
j )Vj

]
(1 − λ)(Dii − 2Dij + Djj + Vi + Vj)

− λ · (cTO · q)

(1 − λ)(Dii − 2Dij + Djj + Vi + Vj)

= −
∑N

k=1(xk − x
(B)
k )(Dki − Dkj) + (xi − x

(B)
i )Vi − (xj − x

(B)
j )Vj

Dii − 2Dij + Djj + Vi + Vj

− λ

1 − λ
· cTO · q

Dii − 2Dij + Djj + Vi + Vj

(33)

with

q :=




−1; δ < δ1,

0; δ1 � δ � δ2,

1; δ2 < δ.

(34)

In figure 2 we have plotted sample graphs of the three update functions with the points
δ1, δ2 and the resulting optimal δ∗.

Remarks. In our computational study we have implemented and tested several modifi-
cations of the 2-phase approach. In a first approach we applied the basic move from
phase II, i.e. choosing an exchange and minimizing Update, from the beginning with the
penalized objective function and we would then switch to the original objective function
as soon as a feasible solution was generated. This approach resulted in a faster minimiza-
tion of the tracking error variance but it failed to reduce the penalty term Penalty(x, C2)
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(Case 1) xi � sb ∧ xj < sb:
Thus we obtain the simple update formula:
δ+ = min{δ+, Ub − Ab}.

(Case 2) xi � sb ∧ xj � sb:

Since x ′
j is not allowed to become negative, we have

δ+ � xj and Ab(δ
+) � Ab and thus for this case the

bundle has no influence on the size of δ+.

(Case 3) xi < sb ∧ xj < sb:
Depending on the upper bound Ub we have to distin-
guish two cases which lead to the following update for-
mula:

δ+ :=
{

min{δ+, Ub − Ab − xi}; Ub � Ab + sb,

min{δ+, sb − xi − ε}; Ub < Ab + sb.

(Case 4) xi < sb ∧ xj � sb:

As depicted in the following two plots we have to distinguish two sub-cases de-
pending on whether xi reaches the bound sb before xj does (4a), or vice versa (4b):

(4a) xj − sb � sb − xi :
If Ub < Ab + xi then we have to apply the update for-
mula δ+ = min{δ+, sb − xi − ε}.
If Ub � Ab + xi then with the same argument as in
Case 2 the bundle has no influence on the size of δ+.

(4b) xj − sb < sb − xi :
Here we obtain the simple update formula:
δ+ = min{δ+, Ub − Ab + xj − xi}.

Figure 1. Four cases with the resulting update formulas for δ+.
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Figure 2. Components of the general update function (28).

to zero and thus this procedure did not converge to a feasible solution. Actually, this
experience has been the motivation for developing the 2-phase approach.

4. Application to real-world index tracking problems

In this section we will describe the application of our meta-heuristic approach to two
portfolio management problems of a major German investment trust company, for con-
fidentiality called ABC in the sequel. In the first case we report detailed results with
ABC-German, an equity fund offered by ABC which we have analyzed and optimized
on a daily basis over a period of nearly 3 months. The second case is constructed from
a global and multi-currency equity fund ABC-Global of ABC which we have optimized
analogously to ABC-German. We do not present the actual results of this optimization
here but use the scenario to evaluate the quality of our heuristic approach: Due to the
large number of assets in the investment universe the only dynamic bundle constraint
contained in the investment guidelines, i.e. the KAGG-40%-rule, is generally uncriti-
cal and therefore neglecting the cardinality constraint too, a relaxed TEP can be solved
as a Quadratic Program (QP) by standard mathematical programming software. Thus
we compare the solution of our heuristic with the optimal QP-solution on 43 instances
constructed from ABC-Global which have been modified artificially imposing a large
number of additional complicating static bundle constraints.



www.manaraa.com

ON A LOCAL-SEARCH HEURISTIC FOR PORTFOLIO MANAGEMENT PROBLEMS 63

For managing both funds we were given a cost factor of 20 bps for the variable
transaction costs, i.e. cvar := 0.002, and we have set the scalar cTO := 50 to balance the
magnitude of the two components in the objective function: TEV and TO.

For the two case problems our 2-phase SA-approach has shown to be rather robust
with respect to the choice of a starting solution and thus we did not have to generate a
large population. The computational results reported in this paper were obtained speci-
fying the size of the population to 2, the number of iterations per stage L := 1500 and
the stop parameter K := 400 for phase I and for phase II we have specified the size
of the population to 1, the number of iterations per stage L := 2000 and the stop pa-
rameter K := 400. Finally we have set the probability parameter of the move-operator
p := 0.75.

Note that we have performed numerical tests with different parameter settings.
We did not intend to determine the “best” configuration. After all, the values chosen
seem to be an appropriate and robust choice for our application. When applying the
2-phase approach to other problem-classes, the quality of the choice should be verified
empirically. All computations were performed on a Pentium III, 1000 MHz with 256 MB
RAM.

4.1. Case I: ABC-German

ABC offers the passively managed equity fund ABC-German which should reproduce
the German Stock Index DAX30. Several constraints of the KAGG and some ABC-
German-specific guidelines prohibit that the benchmark DAX30 can be identically re-
produced and the portfolio manager has the possibility to introduce a limited number of
non-DAX30 stocks contained in the STOXX200-Index into the portfolio. Additionally,
a cash position and a position in a future on the DAX30 is possible in order to invest
temporary cash flows to the fund. These two non-stock assets, the DAX30 stocks and
the STOXX200 stocks, form the investment universe for ABC-German. The standard
unit for monetary terms is Euro. Note, that for reasons of confidentiality we have scaled
the NAV of ABC-German to 25,000,000 Euro for May 1st, 2001.

For the estimation of the returns the professional QUANTEC Cross-Country Model1

is used, a factor model based on 43 macro-economical factors. On the first trading
day of a month QUANTEC provides the factor loadings and the standard deviations of
the residual return for each asset of the investment universe as well as the matrix of
covariances between the factors. These parameters are valid for the whole month. Due
to missing factor loadings in the QUANTEC model eleven assets from the STOXX200
have to be eliminated from the ABC-German universe. Also, most of the NB = 30
stocks of the DAX30-benchmark are contained in the STOXX200 too, so the investment
universe for ABC-German consists of N = 202 assets.

In table 3 we introduce the set of relevant KAGG-constraints and ABC-German-
specific constraints (IG1)–(IG9). With respect to the KAGG-constraints this is a rather
simple application since the management of ABC-German does not allow complex
derivatives, etc.
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Table 3
Relevant KAGG-constraints and fund-specific constraints for ABC-German.

Floor/ceiling constraints:
(IG1) No short-sales, i.e. xi � 0 (i = 1, . . . , N).
(IG2) The share of DAX30-futures should not exceed 20%, i.e. xFut � 0.2.
(IG3) No stock is allowed to have a share of more than 10%, i.e. xi � 10% (i = 1, . . . , N − 2).
(IG4) The tracking portfolio x should be linked to the benchmark x(B) such that for each DAX30

asset i the share in the portfolio should differ from the share in the actual DAX30 and from
the upper bound of 10%, respectively, by at most � = 0.015. Since the actual DAX30

shares x
(B)
i

and � are constant parameters these guidelines can be represented as a set of
simple floor/ceiling constraints.

(IG5) In order to have enough liquidity if fund shares are returned, the cash position should
range between 3% and 10%, i.e. 0.03 � xCash � 0.1.

Dynamic bundle constraints:
(IG6) The share of the set of those assets with an individual share of at least 5% should not

exceed 40%, i.e.
∑

i:xi�0.05 xi � 0.4.

Static bundle constraints:
(IG7) The share of assets of the automobile industry (BMW, DaimlerChrysler, MAN,

Volkswagen) are bounded to vary between 15% and 20% giving another bundle condition.
(IG8) Finally, Siemens and Infineon are interpreted as one asset, i.e. the sum of the associated

shares should not exceed 0.1.

Cardinality constraint:
(IG9) In order to control management/transaction costs we introduce a cardinality constraint

with NL := 50 and NU := 150.

In the following we first present results for the re-optimization for one specific day
in order to illustrate the characteristics of our heuristic approach. Then we show the
result of managing the fund over a period of about 3 months, from May 1st until July
18th, 2001. Here, we first assume that transaction costs are irrelevant. Finally, we show
how the consideration of transaction costs influences the solution. Note that we can give
here only the essence of the results on an aggregated level. More detailed information
can be found in tables 4–6.

4.1.1. Optimization for a single day
In this subsection we show the results for solving TEP for June 1st, 2001, without con-
sideration of transaction costs, i.e. setting λ := 0. On May 31st a feasible portfolio was
constructed with a TEV-value of 0.781, which is a reasonable good quality. Yet, changes
in the DAX30 benchmark result in violations of IG6 and IG7 making this portfolio in-
feasible for June 1st. Starting from the population of the initial (two) solutions phase
I needs about 3 CPU-seconds for 18 · 1500 · 2 = 54,000 moves for generating a feasible
portfolio. Phase II needs about 53 seconds for the 300 · 2000 · 1 = 600,000 moves
while generating 3,193 improving feasible solutions within the search process. The best
portfolio has a cardinality of 78 assets and an (objective function) value TEV = 0.817.
The turnover volume is TO = 0.0573, i.e. according to the definition (4) of TO nearly 3
percent of the portfolio is restructured.
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Convergence of the SA in phase I:

Convergence of the SA in phase II:

Figure 3. Convergence of the 2-phase approach for June 1st, 2001 (with λ = 0).

In figure 3 we display the convergence of the evaluation function F and both com-
ponents of the objective function f , i.e. TEV and TO. Additionally we show the de-
velopment of the penalty term and the cardinality for phase I and phase II, respectively.
This behaviour has shown to be typical for all SA-runs of the two phases.

The plots demonstrate quite clearly that the SA-search strategy in phase I manages
to drive the penalty term to zero, i.e. converges to a feasible portfolio. In phase I the
cardinality of the portfolio increases to NU (= 150) rapidly and maintains at this level.
Then in phase II, as can be seen from the plots, the tracking error variance as well as the
cardinality are reduced.

Considering transaction costs, i.e. solving the model with λ := 0.25, the charac-
teristics of the resulting diagrams are similar. Here the tracking error variance of the
best solution at the end of phase II amounts to TEV = 0.850 but the turnover volume is
significantly reduced from 0.0573 to 0.00199 (which equals about 97 Euro).

4.1.2. Managing ABC-German over time
In the following we summarize the results for managing ABC-German over the period
from May 1st, 2001 up to July 18th, 2001, i.e. a period of 56 consecutive trading days.
Detailed results are listed in table 4.
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Table 4
Results for ABC-German (heuristic with λ = 0 and λ = 0.25).

Day λ = 0 λ = 0.25

Current portfolio “Optimized” portfolio Current portfolio “Optimized” portfolio

TEV NAV fea TEV NAV # Ctac TEV NAV fea TEV NAV # Ctac

05.01 0.623 24,999 57 0.623 25,004 57
05.02 0.721 24,766 no 0.828 24,767 82 6,469 0.721 24,771 no 0.662 24,773 57 192
05.03 0.864 24,326 no 0.567 24,325 57 6,673 0.695 24,340 no 0.620 24,343 57 200
05.04 0.468 24,468 no 0.823 24,467 77 5,350 0.475 24,483 no 0.841 24,479 87 4,435
05.07 0.812 24,436 no 0.862 24,437 78 531 0.828 24,449 no 0.878 24,447 88 231
05.08 0.939 24,446 no 0.602 24,447 60 5,456 0.956 24,453 no 0.941 24,456 83 151
05.09 0.659 24,298 no 0.898 24,294 79 5,090 0.979 24,312 yes 0.924 24,313 83 0
05.10 0.812 24,689 no 0.807 24,689 75 1,740 0.886 24,704 yes 0.882 24,708 83 0
05.11 0.835 24,543 yes 0.798 24,541 76 0 0.917 24,563 yes 0.882 24,562 83 0
05.14 0.892 24,249 yes 0.811 24,250 78 0 0.969 24,271 yes 0.890 24,273 83 0
05.15 0.828 24,294 yes 0.775 24,297 76 0 0.896 24,313 yes 0.869 24,314 83 0
05.16 0.860 24,398 no 0.768 24,397 74 867 0.932 24,420 yes 0.838 24,423 83 0
05.17 0.684 24,620 no 0.766 24,616 76 1,473 0.823 24,637 no 0.828 24,638 83 111
05.18 0.931 24,666 yes 0.593 24,665 60 0 0.979 24,687 yes 0.920 24,689 83 0
05.21 0.855 24,830 no 0.565 24,830 61 5,231 0.900 24,853 no 0.893 24,853 83 168
05.22 0.545 24,960 no 0.771 24,962 87 6,394 0.870 24,988 no 0.896 24,990 84 368
05.24 0.804 24,947 no 0.854 24,946 86 1,545 0.925 24,966 no 0.930 24,967 87 292
05.25 0.885 24,752 no 0.868 24,751 87 777 0.951 24,775 no 0.937 24,776 92 391
05.28 0.889 24,686 no 0.865 24,688 86 593 0.949 24,714 no 0.926 24,715 90 159
05.29 0.901 24,373 no 0.943 24,374 83 3,300 0.989 24,402 no 0.950 24,403 90 270
05.30 0.968 24,015 no 0.919 24,013 79 2,075 0.979 24,045 no 0.963 24,044 90 296
05.31 0.769 24,292 no 0.760 24,292 75 2,112 0.814 24,325 no 0.807 24,324 89 118
06.01 0.870 24,303 no 0.817 24,303 78 2,785 0.918 24,334 no 0.893 24,337 88 97
06.04 0.719 24,462 no 0.769 24,461 75 1,009 0.811 24,497 no 0.839 24,500 88 153
06.05 0.800 24,727 no 0.811 24,726 80 773 0.863 24,765 no 0.889 24,767 88 114
06.06 0.873 24,483 no 0.487 24,484 62 6,034 0.968 24,534 no 0.891 24,535 87 360
06.07 0.503 24,470 no 0.817 24,469 79 5,332 0.869 24,534 yes 0.908 24,534 87 0
06.08 0.765 24,424 no 0.503 24,428 65 5,132 0.798 24,483 no 0.800 24,484 86 91
06.11 0.546 24,381 no 0.514 24,384 62 577 0.831 24,424 no 0.870 24,424 86 166
06.12 0.579 23,945 no 0.501 23,947 62 583 0.948 23,992 yes 0.892 23,993 86 0
06.13 0.381 24,166 no 0.400 24,166 59 712 0.810 24,214 no 0.796 24,216 86 42
06.14 0.556 23,865 no 0.443 23,866 59 860 0.956 23,911 no 0.829 23,912 85 355
06.15 0.390 23,584 no 0.332 23,584 59 929 0.759 23,637 no 0.748 23,637 85 84
06.18 0.278 23,298 no 0.269 23,297 54 868 0.713 23,357 yes 0.713 23,358 85 0
06.19 0.958 23,515 no 0.595 23,516 65 2,728 1.727 23,566 no 0.861 23,562 76 1,571
06.20 0.651 23,272 no 0.723 23,273 67 1,275 0.932 23,349 no 0.997 23,347 76 288
06.21 0.700 23,289 no 0.823 23,287 77 1,273 0.910 23,357 no 1.016 23,355 76 394
06.22 1.071 23,319 no 1.038 23,316 74 1,142 1.266 23,386 no 1.237 23,385 76 94
06.25 1.177 23,308 no 0.989 23,308 71 1,170 1.383 23,376 no 1.174 23,377 76 379
06.26 0.878 23,050 no 0.992 23,049 65 3,586 1.059 23,129 no 1.238 23,130 75 1,181
06.27 0.952 23,092 no 0.833 23,091 68 3,617 1.180 23,178 no 1.185 23,176 75 120
06.28 0.680 23,563 no 0.813 23,561 68 1,302 0.978 23,633 no 1.077 23,632 75 512
06.29 0.997 23,869 no 1.047 23,867 70 1,311 1.244 23,927 no 1.316 23,930 75 339
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Table 4
(Continued.)

Day λ = 0 λ = 0.25

Current portfolio “Optimized” portfolio Current portfolio “Optimized” portfolio

TEV NAV fea TEV NAV # Ctac TEV NAV fea TEV NAV # Ctac

07.02 0.996 24,159 no 1.110 24,159 77 1,986 1.279 24,212 no 1.393 24,212 76 343
07.03 1.317 23,985 no 1.211 23,985 72 1,157 1.595 24,036 no 1.602 24,037 76 436
07.04 1.121 23,829 no 1.094 23,827 70 791 1.534 23,891 yes 1.512 23,892 76 0
07.05 1.090 23,682 no 1.095 23,683 73 891 1.519 23,760 no 1.521 23,758 76 136
07.06 1.227 23,179 no 1.096 23,178 77 1,005 1.654 23,257 no 1.551 23,256 76 153
07.09 0.967 23,163 no 0.970 23,163 69 826 1.399 23,250 no 1.405 23,248 76 48
07.10 0.958 23,024 no 0.979 23,023 75 1,041 1.377 23,115 yes 1.404 23,115 76 0
07.11 1.087 22,893 no 1.041 22,893 72 1,023 1.474 22,978 no 1.466 22,977 76 82
07.12 0.920 23,196 no 0.988 23,197 73 1,435 1.311 23,267 no 1.360 23,265 76 356
07.13 1.120 23,281 no 1.126 23,280 71 1,573 1.498 23,346 no 1.492 23,346 76 187
07.16 1.313 23,098 no 1.165 23,097 70 1,371 1.664 23,165 no 1.506 23,164 76 274
07.17 1.091 23,025 no 1.026 23,025 79 3,717 1.413 23,093 no 1.369 23,094 76 104
07.18 1.019 22,577 no 0.976 22,578 70 3,063 1.369 22,658 no 1.357 22,659 76 49

Min 0.278 22,577 0.269 22,578 54 0 0.475 22,658 0.620 22,659 57 0
Max 1.317 24,960 1.211 24,999 87 6,673 1.727 24,988 1.602 25,004 92 4,435
Avg 0.845 23,973 0.812 23,991 71 2,156 1.063 24,020 1.036 24,038 80 289
Sum 118,554 15,888

# = cardinality; fea = feasible; NAV in 1,000 Euros; Ctac: transaction costs.
Note that if the portfolio of day T − 1 is feasible for day T and is not re-optimized then the actual TEV of
this portfolio for day T is shown.

In a first experiment we have neglected transaction costs and we have performed
the following procedure: The heuristic is applied every day in the manner which we have
described in the last section. In the case that the portfolio chosen on day T − 1 does not
violate the investment guidelines on day T there is no need to restructure this so-called
current portfolio.

Now, we assume that the fund manager restructures the current portfolio accord-
ing to the proposal, i.e. the “optimized” portfolio, if and only if the current portfolio is
infeasible. Otherwise, if the portfolio stays feasible, the fund manager does not restruc-
ture the portfolio and keeps the portfolio unchanged for another day even if the proposal
results in a portfolio with smaller tracking error variance in order to save transaction
costs. In a second experiment we have incorporated transaction costs into the optimiza-
tion and applied the same managing strategy as in the first experiment. Note, that for
May 1st, no initial portfolio is available and thus we adopt the portfolio proposed by the
meta-heuristic to initialize the process.

Optimization neglecting transaction costs. First of all, it should be mentioned that the
DAX30-benchmark is infeasible for all 56 days, violating each of the three bundle con-
straints IG6, IG7 and IG8 significantly.
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We have analyzed the quality of the current portfolio (i.e. the portfolio realized on
day T − 1) with respect to the benchmark and prices on day T . It turned out that the
current portfolio of day T − 1 becomes infeasible for day T quite regularly. After all,
the current portfolio remains feasible from T − 1 to T only 4 times within the 56 days
and this is mainly caused by violations of investment guideline IG6.

Analyzing the quality of the “optimized” portfolios generated by our algorithm it
turns out that we generate portfolios with shares that are very close to the bounds of
the three bundle constraints IG6–IG8. And thus, already small changes in prices from
day T − 1 to day T will result in shares which violate some of the constraints. Thus to
obtain more stable portfolios it might be a good idea to strengthen the bounds for these
guidelines for the optimization.

Starting from an initial budget of 25,000,000 Euro on May 1st, the net asset value
of the portfolio (neglecting any deduction of transaction costs) is only 22,577,600 Euro
at the end of the 2.5 months period. Yet, in the present case of a passively managed fund
this reduction is not a sign of poor management. This development has to be analyzed
relative to the development of the benchmark portfolio. It is well known that the DAX30
went downward significantly during that period of time. In figure 4 we have plotted
the NAV-curves for the DAX30-benchmark and the tracking portfolio after performing
a linear transformation of the data to the interval [0, 1].

This plot demonstrates in a very impressive way two important results which can
be drawn from this case study:

– The TEP-model, i.e. minimization of the tracking error variance is an appropriate
model to “track” a benchmark in passive stock fund management. Note, that the
correlation between the two timeseries is about 0.995 which indicates the tracking
quality.

– Our meta-heuristic provides fund management with portfolios which are of excel-
lent quality. When neglecting transaction costs, the tracking error variance is sig-

Figure 4. Quality of the tracking portfolio.
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nificantly below 1, which is more than acceptable according to the fund manager’s
comments.

In table 4 the transaction costs are shown for the setting λ = 0 too, although the turnover
volume TO has not been considered within this experiment. After all the costs for per-
forming the associated buy and sell proposals amount to 2,156 Euro per day on the
average and sum up to a total of approximately 118,554 Euro for the entire period. Even
for a fund of 25 billion Euro this is a significant amount and this motivates to consider
turnover volume and transaction costs within the optimization.

Optimization considering transaction costs. In table 4 we also report the results ob-
tained in the second experiment when considering transaction costs in the objective
function choosing λ = 0.25. Generally, the fund manager is able to modify this pa-
rameter and to perform a simulation leading to several different portfolios which are
efficient with respect to tracking error variance and transaction costs. As expected the
heuristic produces solutions with larger TEV’s than before: The increase amounts to
0.22 on average but the tracking error variances are still acceptable. This increase is
compensated by a significant reduction of the turnover volume TO by a factor of 0.13
on average. Figure 5 shows the different developments of the turnover volume over the
managing period for the two experiments.

Over the entire period total transaction costs are reduced from 118,554 Euro to
15,888 i.e. to about a seventh of the transaction costs when optimizing the portfolio with
λ = 0. It is an interesting and mentionable side-effect that the number of days for which
the current portfolio remains feasible rises from 4 to 12, i.e. for 21% of the 56 days a
re-optimization is not favorable anymore.

Figure 5. Comparison of the turnover volumes TO.
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4.2. Case II: ABC-Global

As we have stated already, the results reported in the following are intended to allow an
estimation of the absolute quality of our result. Therefore we have performed tests com-
paring our solution with the solution obtained by the Barrier Optimization Algorithm of
CPLEX.2

ABC-Global is a passively managed fund with N := NB := 502 assets from the
index MSCI World Developed Markets with more than $8 billion market capitalization
each. Just as ABC-German the ABC-Global has to obey the KAGG-rules. Furthermore
no short-sale of a stock and no share of more than 10% is allowed leading to a set
of floor/ceiling constraints with Li := 0 and Ui := 0.1 (i = 1, . . . , N). Also, the
502 assets in the benchmark are clustered into 51 different countries and 25 different
industries and the internal guidelines for ABC-Global impose a static bundle constraint
on each of these 76 groups of assets.

With the large number of assets in this benchmark the mandatory KAGG-40%-
rule is relatively uncritical when prices change from day to day and thus ABC is re-
optimizing the fund on a monthly basis only. In the following we will report results
for a period of 43 months from February 1999 to April 2002. The monetary unit of
ABC-Global is US-dollar and for reasons of confidentiality we have scaled the NAV to
$100,000,000.

In the management guidelines for ABC-Global there is no mandatory cardinality
constraint imposed and thus if we neglect the dynamic bundle constraint (16) too, then
we obtain a QP with linear constraints as relaxation which is solvable by standard QP-
Software. Yet, there is one obstacle which does not allow to apply the exact solver of the
QP-Software to this relaxation of the actual TEP-model: As for ABS-German the return
model of ABC-Global is the QUANTEC factor model. An analysis of the data obtained
shows that more or less constantly the matrix D = βTCβ is not positive semidefinite and
thus the standard exact QP-solvers are not applicable. For that reason we have separately
determined the covariances for the TEV-model by a historical timeseries analysis and
we have used these empirical estimators which result in positive semidefinite covariance
matrices in the computational study feeding the objective function with this data by
setting K := N , β the N-dimensional identity matrix and Vk = Var(εk) := 0 for
k = 1, . . . , N .

Also, to create a more demanding test scenario we have artificially complicated the
actual monthly problems by strengthening the bounds of the static bundle constraints
systematically such that these constraints are not fulfilled by the benchmark: Let x

(B)
l

be the current weight of the benchmark for bundle l, then we draw a random number
x′

l from [0.3x
(B)
l , 1.7x

(B)
l ] and in the case that x′

l > x
(B)
l we set Ll := x′

l and Ul := 1,
otherwise Ll := 0 and Ul := x′

l , i.e. we make the choice of the benchmark weights
infeasible for every bundle constraint.

Although the benchmark portfolio has a non-negative share for each of the 502
assets systematically applying the QP-solver to the modified problems we obtain an
“optimal” cardinality which is far below N = 502. For our 2-phase heuristic we have
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imposed a cardinality constraint with NL := 50 and NU := 150 as in the ABC-German
case.

4.2.1. Results for managing ABC-Global
Detailed results with characteristics of the solutions of the CPLEX solver and our heuris-
tic are listed in tables 5 and 6.

After all, the 2-phase heuristic shows a behaviour which is similar to the results
for the ABC-German example with a smaller number of assets: If we impose a relative
small upper bound for the cardinality in phase I, NU = 60 say, and the bounds NL = 50
and NU = 150 apply to phase II, then phase I stops with a feasible solution that has
cardinality 60 at most and phase II rapidly increases this cardinality up to a value of
above 300 first and then slowly reduces the cardinality to values which are close to the
“optimal” cardinality proposed by the QP-solution.

In figure 6 we display the tracking error values and the cardinalities of the track-
ing portfolios for the 43 months/problems not considering transaction costs. These plots
demonstrate that the 2-phase heuristic provides portfolios with a good quality compared
to the optimal solution generated by the QP-solver. For the 43 months the relative error
is only 1.65% on average with a cardinality of the heuristic solutions which is systemati-
cally larger than the cardinality of the optimal solution. This implies that when applying
the heuristic the specification of a cardinality constraint seems to be advisable.

Finally figure 7 shows again the impact of transaction costs. Again we have solved
the model with λ = 0.25 by our 2-phase heuristic. Detailed results are listed in table 6.

Starting from an initial value of $100,000,000 the benchmark value has increased
to about $171,561,000 within the 3.5 years of the planning horizon. Over the entire
period of 43 months the total transaction costs add up to about $1,604,603 and $38,204
on average for the optimal solution for the model with λ = 0 whereas solving the model
with λ = 0.25 the portfolios generated by the 2-phase heuristic lead to a total value of
$391,070 and $9,311 on the average.

Figure 6. Comparison of TEV and cardinality for QP and the heuristic (λ = 0 and λ = 0.25).
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Table 6
Results for the ABC-Global (heuristic with λ = 0.25).

Day λ = 0.25

Current portfolio “Optimized” portfolio

TEV NAV fea TEV NAV # Ctac

12.01.99 0.00565 100,000 110
09.02.99 0.00559 103,627 no 0.00583 103,622 115 6,833
09.03.99 0.00600 98,810 no 0.00608 98,812 118 4,843
06.04.99 0.00693 105,127 no 0.00658 105,135 122 7,240
04.05.99 0.00624 104,252 no 0.00627 104,246 122 1,960
01.06.99 0.00665 108,441 no 0.00638 108,449 121 5,480
29.06.99 0.00621 100,173 no 0.00614 100,168 122 4,768
27.07.99 0.00619 95,072 no 0.00615 95,072 123 3,459
24.08.99 0.00819 114,801 no 0.00732 114,801 125 6,188
21.09.99 0.00803 123,625 no 0.00724 123,622 123 11,410
19.10.99 0.00740 122,643 no 0.00741 122,639 122 1,927
16.11.99 0.00816 130,650 no 0.00781 130,648 118 10,350
14.12.99 0.00824 133,428 no 0.00786 133,422 115 6,810
11.01.00 0.00822 129,599 no 0.00806 129,597 117 2,527
08.02.00 0.00876 130,311 no 0.00800 130,318 122 8,576
07.03.00 0.00813 146,681 no 0.00829 146,686 117 10,479
04.04.00 0.01224 164,057 no 0.00772 164,062 121 49,895
02.05.00 0.00756 160,763 no 0.00743 160,759 124 3,659
30.05.00 0.00710 165,936 no 0.00722 165,936 118 14,986
27.06.00 0.00710 165,232 no 0.00723 165,237 119 15,814
25.07.00 0.00959 172,414 no 0.00742 172,413 124 35,068
22.08.00 0.00776 191,632 no 0.00727 191,639 120 29,285
19.09.00 0.00747 191,567 no 0.00708 191,562 126 12,037
17.10.00 0.00697 193,904 no 0.00683 193,907 123 8,961
14.11.00 0.00682 188,668 no 0.00672 188,664 122 4,356
12.12.00 0.00654 185,486 no 0.00657 185,495 121 3,795
09.01.01 0.00677 186,214 no 0.00653 186,215 121 9,908
06.02.01 0.00710 196,686 no 0.00699 196,691 123 15,541
06.03.01 0.00744 191,563 no 0.00725 191,560 123 6,679
03.04.01 0.00713 200,726 no 0.00684 200,737 123 7,954
01.05.01 0.00687 210,185 no 0.00679 210,184 126 4,839
29.05.01 0.00692 201,241 no 0.00684 201,230 129 5,262
26.06.01 0.00714 197,651 no 0.00712 197,656 129 8,015
24.07.01 0.00735 194,709 no 0.00720 194,715 130 7,983
21.08.01 0.00680 202,072 no 0.00687 202,078 121 4,722
18.09.01 0.00721 196,675 no 0.00699 196,680 122 5,042
16.10.01 0.00696 205,687 no 0.00698 205,692 122 5,221
13.11.01 0.00732 196,785 no 0.00717 196,789 134 5,038
11.12.01 0.00666 196,748 no 0.00674 196,740 130 13,044
08.01.02 0.00732 200,063 no 0.00722 200,060 129 3,401
05.02.02 0.00691 191,967 no 0.00683 191,963 133 10,101
05.03.02 0.00713 190,257 no 0.00706 190,257 130 4,101
02.04.02 0.00681 183,982 no 0.00676 183,982 129 3,494

Min 0.00559 0 0.00565 95,072 110 1,927
Max 0.01224 210,185 0.00829 210,184 134 49,895
Avg 0.00733 159,770 0.00699 162,096 123 9,311
Sum 391,070

BM = Benchmark Portfolio; # = cardinality; fea = feasible; NAV in 1,000 dollars.
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Figure 7. Comparison of the transaction costs of the heuristic solution for λ = 0.25 and the QP-solution.

5. Summary

In this paper we have introduced a 2-phase simulated annealing heuristic for solving
a special class of index tracking problems in passive portfolio management. We have
described the underlying model, the implementation of the two phases and, finally, we
have extensively reported our experience on managing two specific funds.

The results demonstrate that in acceptable computation time the meta-heuristic
approach provides solutions, i.e. proposals for the fund manager which are feasible with
respect to all guidelines and which are of excellent quality with respect to the tracking
error variance. We also show that through the use of the heuristic the fund manager can
control the turnover volume and thus consider transaction costs in the optimization.

When applying the approach within a decision support system the fund manager
may vary several (model) parameters in a very flexible and comfortable manner to ana-
lyze the stability and sensitivity of the solutions with respect to changes in the data like
bounds within certain constraints, cost values, etc. This is an important feature, espe-
cially within portfolio management, since here some constraints are “soft” in the sense
that they may be violated for a short period of time and recovered later. Also every port-
folio manager has some individual strategic objectives and tacit knowledge which is not
explicit in the “standard” optimization model but can be incorporated into the evaluation
and construction via simulation.

Note that the 2-phase heuristic approach which we have presented in this paper
is not immediately transferable to the five well-known portfolio optimization instances
published by Beasley, Meade, and Chang (1999) on their web-page http://mscmga.ms.ic.
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ac.uk/jeb/orlib/indtrackinfo.html. The reason is that the optimization model of Beasley dif-
fers significantly from our tracking error model with respect to the definition of the track-
ing error objective function, the return model, and the use of specialized floor/ceiling
constraints.

After all, our experiences with the application of meta-heuristic based decision
support tools to other portfolio management scenarios, as for instance to funds with
more complex assets like futures etc., to portfolio selection models under the mean–
variance paradigm with the evaluation of returns based on stochastic processes and to
bond funds indicate that these approaches are practical for use in real-world problems.

Notes

1. QUANTEC Cross-Country Model (XC), Release 4.0 (May–July 2001).
2. CPLEX 7.1 Barrier Optimizer, is a widely used professional Mathematical Programming Software pack-

age with a primal–dual predictor–corrector log barrier algorithm.
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